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Abstract

Modern Portfolio Theory (MPT) has been the canonical theoretical model of portfolio
selection for over 60 years, yet it faces limited adoption among practitioners. This is be-
cause MPT’s main inputs, assets’ expected returns and covariances, are estimated with
noise, while the solution to its optimization problem requires the inversion of an ill-
conditioned matrix. As a result, MPT often produces unstable portfolios with extreme
weights. This study reviews and evaluates several methods for altering MPT’s inputs
and optimization problem to produce more stable and diversified portfolios, without
discarding MPT’s intuitive assumptions and structure. These methods are: robust
estimators and shrinkage estimators of expected returns and covariances, covariances
based on statistical models of returns, sparse graphical models of inverse covariance
matrices, filtered covariance matrices, portfolio optimization that incorporates uncer-
tainty in expected returns, and portfolio optimization with penalties on weights’ norm.
To evaluate competing methods, I construct their respective portfolios using monthly
data on 92 assets and 90 rolling training periods of 15-year length. Comparing these
portfolios’ out-of-sample performance across several financial metrics and rolling test
periods of 6-month length, I find that most alternatives outperform the standard MPT
approach. However, I also find that only the L1-norm penalized portfolio marginally
outperforms the benchmark equal-weighted portfolio, and owes its good performance
to limiting short-sales.



1 Introduction

Since the Nobel-prize-winning work of Markowitz (1952, 1959), modern portfolio theory

(MPT) has attracted the attention of several disciplines: finance, statistics, economics,

operations research, electrical engineering, and computer science, among others.1 Despite

its attractive normative and statistical properties, the MPT framework is far from univer-

sally adopted by portfolio managers, a phenomenon Michaud (1989) labeled the “Markowitz

enigma”. MPT’s low adoption rate is owed to several limitations, some theoretical, others

practical. Among the former, the largest limitation is the instability of optimal portfo-

lio weights and the seemingly non-sensical investment decisions they produce. Among the

latter, the largest practical limitation is that MPT produces portfolios that incur high trans-

action costs, especially for individual retail investors.2 Crucially, the increasing dominance

of passive over active investing, coupled with the advent of so-called “robo-advisors”, has

re-popularized MPT.3 However, the framework’s core shortcomings remain, thus creating a

stronger call to repair MPT.

In this study, I explore several approaches to overcoming MPT’s main limitations. Since

MPT is composed of three main ingredients – estimates of assets’ expected returns, esti-

mates of covariance in those returns, and a constrained optimization problem – I present

approaches that attempt to improve each of those ingredients. These approaches include

robust estimators and shrinkage estimators of expected returns and covariances, covariances

based on statistical models of returns, sparse graphical models of inverse covariance matrices,

filtering covariance matrices based on their spectral properties, portfolio optimization that

incorporates uncertainty in expected returns, and portfolio optimization with penalties on

the norm of weights. Throughout, I attempt to present approaches from diverse method-

ological backgrounds in a unified framework. Additionally, I devote more attention to newer

1Throughout, I use “Modern Portfolio Theory”, “Markowitz model”, and “mean-variance portfolio optimiza-
tion” interchangeably.

2I return to the limitations of MPT in Section 2.
3Wealthfront, the second largest robo-advisor (as measured by assets-under-management), champions the use
of MPT in several research notes on its methodology (Wealthfront, 2018).
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methods (e.g. sparse graphical modeling, penalized optimization), which have a stronger

grounding in statistical theory and also present more opportunities for development.

To evaluate the above approaches, I conduct a comprehensive empirical comparison of

their financial performance. Using real data on the monthly returns of 92 assets listed on US

stock exchanges over the last 60 years, I construct the portfolios selected by each method in 90

rolling training periods of 15-year length, hold each portfolio for 6 months, and record its out-

of-sample performance across a range of financial metrics—return, risk, risk-adjusted returns,

diversification, gross exposure, exposure through short-sales, and turnover. In addition to

the standard MPT portfolio and the alternative approaches mentioned above, I evaluate two

benchmarks, the S&P500 index and the equal-weighted portfolio, resulting in 18 portfolios.

Overall, in line with the literature, I find that the standard MPT approach performs

poorly, and most alternative methods beat it. On the contrary, but also in agreement with

previous findings, I find the equal-weighted portfolio to be a tough benchmark. Indeed, only

the L1-norm penalized portfolio beats the equal-weighted portfolio on risk-adjusted returns.

This is most likely owed to the fact that the optimal value of the L1 penalty parameter calls

for no short-selling. Moreover, the L1 portfolio is the top-performer across essentially all

metrics, which confirms previous research that short-selling creates a net loss for portfolio

performance—by inducing more risk, leverage, and instability than the additional returns

generated. Following the L1 portfolio’s performance is the L2-norm penalized portfolio and

the portfolio constructed through filtered covariance matrices, while portfolios constructed

through shrinkage estimators and model-based estimators also perform respectably.

The remainder of this study proceeds as follows. Section 2 reviews the standard MPT

framework and its statistical limitations. Section 3 reviews the various approaches for dealing

with those limitations. Section 4 presents an empirical evaluation of competing approaches

and discusses its results. Section 5 summarizes and concludes.
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2 MPT Framework

In this section, I present MPT’s assumptions, optimization problem, and solution, as well as

its statistical limitations.

2.1 Standard Approach

Assumptions MPT makes numerous assumptions about investors and the market, which

I adopt throughout this study, unless otherwise noted. First, investors are identical, risk-

averse, and rational.4. Second, investors minimize portfolio risk while maximizing portfolio

expected returns, optimizing over just one period. Third, investors select portfolios solely on

the basis of their expected returns and risk, where the latter is measured as the variance of

portfolio returns.5 Fourth, asset returns are stationary over time. Fifth, investors know the

price of all assets considered for investment, and update their portfolio according to changes

in asset prices immediately and costlessly. Sixth, asset prices are exogenous (no investor’s

choices affect asset prices). Seventh, all assets considered for investment are infinitely liquid,

thus trades of any size can be made on those assets. Eighth, investors can take negative

or “short” positions on assets.6 Ninth, investors can borrow and lend without risk and at

the same interest rate. Tenth, investors incur no transaction costs (e.g. taxes, brokerage

fees, bid-ask spreads, foreign exchange commissions). Finally, investors allocate all of their

budget to their portfolio (no savings).

4Formally, from a utility theory perspective, risk-aversion implies that the investor’s expected utility is a
concave function of her wealth.

5Some formulations of MPT assume that returns are distributed multivariate normal. Strictly speaking, this
assumption is too strong, since mean-variance optimization of returns only requires that returns are fully
described by their mean, variance, and covariance. However, though there are distributions other than the
multivariate normal that satisfy this requirement, assuming a multivariate normal has practical advantages.

6A short-sale or short postion on an asset is a bet that its price will decrease. Mathematically, a short position
on asset i is represented as a negative portfolio weight (wi < 0). In practice, opening or initiating a short
position on asset i at time t involves borrowing the asset from a broker and selling it at its current value
pi,t. Closing or covering a short position on i, say at t+ 1, involves selling i, receiving pi,t+1, returning pi,t
plus any fees (d) charged by the broker, and retaining pi,t− pi,t+1− d. Clearly, if i’s price decreases by more
than d during [t, t + 1], a short-sale is profitable. Note that an investor’s maximum gain from shorting i is
pi,t − d, while her maximum loss is infinite. Due to this risk, many institutional investors are prohibited
from directly engaging in short-selling (e.g. university endowment funds).
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Notation Throughout, I use i = 1, . . . , N to denote assets and t = 1, . . . , T to denote

time periods. For all i and t, asset prices are denoted by pi,t ∈ R+, asset returns (between

adjacent time periods) by ri,t =
pi,t−pi,t−1

pi,t−1
∈ R, (true) expected asset returns (during some

time period) by µi = E[ri] ∈ R, (true) covariances of asset returns (during some time period)

by σij ∈ R, (true) variances of asset returns (during some time period) by σii = σ2
i ∈ R+, and

portfolio weights (fraction of wealth allocated to each asset) by wi ∈ R. Column vectors are

denoted by lower-case bold letters, such as that of assets’ expected returns (E[r] = µ ∈ RN)

and that of portfolio weights (w ∈ RN), and matrices are denoted by upper-case bold

letters, such as that of the true covariances of asset returns (E[(r − µ)(r − µ)ᵀ] = Σ ∈

RN×N). Estimates of true parameters are denoted through the hat symbol, as with the

sample estimate of the covariance matrix of asset returns (Σ̂).

Optimization Problem There are many formulations of the MPT optimization problem

and the resulting optimal (Markowitz) portfolio. For this reason, I attempt to frame the

optimization problem in a way that is transferable across the different approaches I will

present. The Markowitz portfolio arises from an investor solving the MPT problem: selecting

a set of weights that minimizes portfolio risk, subject to meeting a level of expected returns

and allocating all of her wealth (normalized to 1)

w∗ = argmin
w

wᵀΣw (1a)

s.t. wᵀµ = r∗ (1b)

wᵀ1N = 1 (1c)

where r∗ is the target level of returns and 1N is an N -length column vector.7

Risk-Free Borrowing/Lending Assume the investor can borrow and lend through

selling and buying a risk-free asset (e.g. US Treasury bill), with fixed return, typically rf >

7The more common formulation of the MPT optimization problem does not set a level of target returns
and, instead, minimizes portfolio risk minus returns, or maximizes portfolio returns minus risk (DeMiguel,
Garlappi and Uppal, 2009).
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0.8 Denoting the amount invested in the risk-free asset as wf , 1c now becomes w̃f+w̃ᵀ1N = 1,

which can be rearranged to w̃ᵀ1N = 1− w̃f . This allows us to choose weights subject only

to the target returns constraint (1b), since the allocation constraint (1c) can always be

satisfied simply by lending or borrowing enough to force the total wealth allocated to 1.

Furthermore, note that portfolio return is rp = w̃frf +w̃ᵀr. Using the rearranged expression

for w̃f , portfolio return can be expressed as the sum of the return from the risk-free asset

plus “excess return” from the N risky assets: rp = rf + w̃ᵀ(r − 1Nrf ). Defining assets’

excess return vector r̃ = r − 1Nrf , portfolio return becomes rp = rf + w̃ᵀr̃, or r̃p = w̃ᵀr̃.

Finally, the vector of assets’ expected excess return is µ̃ = E[r̃] = E[r]− 1Nrf = µ− 1Nrf .

Substituting this into constraint 1b and dropping constraint 1c, we have the optimization

problem

w̃∗ = argmin
w̃

w̃ᵀΣw̃ (2a)

s.t. w̃ᵀµ̃ = r̃∗ (2b)

where r̃∗ = r∗ − rf . Notice that converting problem 1 into problem 2a only involves sub-

tracting rf from risky assets’ expected return vector µ to get µ̃; the covariance matrix Σ is

the same as problem 1, as rf is fixed and does not co-vary with the N risky assets.9

Optimal Portfolio To solve problem 2a, we set up the Lagrangian L(w̃, λ) = w̃ᵀΣw̃−

λ(w̃ᵀµ̃ − r̃∗) and solve the FOC for w̃ to get an expression for the Lagrange parameter

λ∗ = 2µ̃Σw̃
µ̃ᵀµ̃

. Substituting λ∗ into the Lagrangian, we get a function L(w̃) that we can solve

for the portfolio weights vector. Assuming that Σ is strictly positive definite, this process

8In addition to simplifying derivations, the existence of a risk-free borrowing/lending rate is a realistic as-
sumption, as most investors allocate part of their wealth to risk-free assets. rf is usually the mean annual
return of the 10-year US treasury bill over the period under study.

9Note that the portfolio weight for the risk-free asset does not enter the optimal weights vector w̃∗ (w̃∗f =
1− w̃ᵀ

∗1N ).
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yields optimal weights

w̃∗ =
r̃∗

µ̃ᵀΣ−1µ̃
Σ−1µ̃ (3)

Note four things in the above expression. First, w̃∗ excludes the weight for the risk-free

asset w̃f∗, and hence (3) gives the absolute weights for the N risky assets. To obtain w̃f∗

we rearrange w̃ᵀ
∗1N = 1 − w̃f∗ to w̃f∗ = 1 − w̃ᵀ

∗1N . Clearly, if the sum of absolute weights

is lower (greater) than 1, w̃f∗ is negative (positive) and investors must borrow (lend) to

form their positions on risky assets. The second thing to note is that, to obtain the relative

weights for risky assets w̃R
∗ , we must normalize the absolute weights by their sum, such that

w̃R
∗ = w̃∗

w̃ᵀ
∗1N

. Relative weights show how the wealth invested in risky assets is distributed

among them. Third, note that the relative weights expression can be rewritten as

w̃R
∗ =

Σ−1µ̃

1ᵀ
NΣ−1µ̃

(4)

whose only arguments are Σ−1 and µ̃ and is proportional to Σ−1µ̃. Relatedly, the fraction

term in (3) is a scalar, which means that absolute weights are also proportional to Σ−1µ̃.

These related points hint at the importance of correctly estimating the expected returns

vector and inverted covariance matrix, a topic to which I return later in this section and

in Section 3. The fourth point to note is that the excess return target r̃∗ does not enter

w̃R
∗ , and thus does not affect the allocation of wealth within risky assets (relative weights).

Irrespective of r̃∗, all optimal portfolios contain the same proportion of risky asset i vs asset

j, and these proportions are determined by Σ−1µ̃. What r̃∗ does change is the allocation

of wealth between risk-free and risky assets (absolute weights). Specifically, the higher the

excess returns targeted, the smaller the weight placed on the risk-free asset (more borrowing)

and the larger the absolute weights on the risky assets, but the latter always maintain the

same proportions. In short, assets’ expected return and covariance determine the proportions

in which wealth is held among risky assets, while the excess return target determines how
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much wealth is held in risky assets.

Optimal Return & Risk Since the optimal portfolio satisfies constraint 2b, by defi-

nition its return is r̃p = r̃∗. In turn, the variance of the optimal portfolio is σ2
p = w̃ᵀ

∗Σw̃∗,

which implies

σ2
p =

r̃2
∗

µ̃ᵀΣ−1µ̃
⇐⇒ σp = (

√
µ̃ᵀΣ−1µ̃)−1r̃∗ (5)

Clearly, optimal portfolio risk is a linear function of target excess return r̃∗. This reveals a

core intuition of the MPT framework: all else equal, optimal portfolios must take on higher

risk if they target higher returns. Conversely, investors can lower their portfolio risk by

targeting lower returns.10

Efficient Frontier More importantly, (5) gives the optimal combinations of excess return

and risk that are feasible given assets’ excess return and covariance, known as the Efficient

Frontier (EF) (Markowitz, 1952). Because we assume risk-free borrowing and lending, the

EF is a straight line given by (5). In my formulation, the EF spans (r̃, σ) space, originates

at (0, 0), and has slope (
√
µ̃ᵀΣ−1µ̃)−1.11 Combinations of excess return and risk below the

EF are suboptimal, while combinations above it are unfeasible (given assets’ excess return

and covariance). Along the EF, if investors target the risk-free rate of return and seek no

excess return (r∗ = rf ⇔ r̃∗ = 0), their optimal portfolio consists of investing all wealth in

the risk-free asset (w̃f∗ = 1 ⇔ w̃ᵀ
∗1N = 0) and takes on zero risk (σp = 0). The higher the

excess return target, the further along the EF the optimal portfolio lies. For some excess

return target r̃
′
∗, the optimal portfolio is the reverse of the zero-risk portfolio and consists of

investing all wealth in the N risky assets (w̃ᵀ
∗1N = 1⇔ w̃f∗ = 0). Any excess return target

less than r̃
′
∗ implies that investors lend a portion of their wealth at rate rf . Conversely, if the

10A corollary is that a rise in the risk-free rate will, ceteris paribus, decrease portfolio risk, as investors allocate
a smaller share of their wealth to risky assets. Mathematically, this is because an increase in rf implies lower
target excess return and thus lower optimal portfolio return.

11The standard presentation of the EF has expected returns on the vertical axis and risk on the horizontal
axis. Since my optimization problem involves choosing a target portfolio return (1b, 2b), I place returns on
the horizontal axis.
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excess return target exceeds r̃
′
∗, investors must borrow at rate rf to invest more than their

total wealth in risky assets (w̃ᵀ
∗1N > 1 ⇔ w̃f∗ < 0).12 Once again, it is worth emphasizing

that all portfolios along the EF contain the same proportions of risky assets, as determined

by assets’ returns and covariance.

Sharpe Ratio Another useful quantity in MPT is the Sharpe Ratio (SR), defined as

the ratio of excess return to risk, the latter measured in standard deviation terms: SR = r̃
σ
.

Rearranging (5) we see that the SR of optimal portfolios is SR∗ = r̃∗
σp

=
√
µ̃ᵀΣ−1µ̃, the

slope of the EF.13 I return to SR in Section 4, since it is a common metric for evaluating

portfolio performance.

2.2 Issues

Calculating (4) requires estimating assets’ expected returns vector and (inverse) covariance

matrix.14 Traditionally, the sample (plug-in) estimators are used: µ̂sample ≡mT = 1
T

∑T
t=1 rt

and Σ̂sample ≡ ST = 1
T

∑T
t=1[rtr

ᵀ
t ]− µ̂µ̂ᵀ, where rt is the N -vector of assets’ returns between

t− 1 and t. Asymptotically, these estimators are unbiased. In practice, there is a wealth of

evidence that these estimators produce portfolios whose weights are very sensitive to changes

in rt.

12In the presence of risk-free borrowing and lending the EF is also called the best Capital Allocation Line,
because it is the line denoting optimal (best) linear combinations (allocations) of capital between the risk-
free-portfolio and the risky-assets-only portfolio. Note that borrowing at rate rf is equivalent to a short
position on the risk-free asset. Portfolios that involve borrowing to finance investments on risky assets are
called “leveraged”.

13In more standard formulations of MPT, where return is measured on the vertical axis and risk-free lend-
ing/borrowing is unavailable, the EF is not a straight line, but rather the upper portion of a parabola (also
known as the Markowitz bullet). In turn, SR∗ is the slope of the CAL that originates at rf and is tangent to
the EF. In that formulation, the best CAL is that with the largest slope (largest SR), because it maximizes
excess return (vertical distance, difference between portfolio return and rf ) for the risk incurred (horizontal
distance).

14To simplify notation, henceforth I present portfolio optimization in terms of expected returns unadjusted for
rf (i.e. r and µ instead of r̃ and µ̃). All issues presented also hold when adjusting for rf .
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2.2.1 Estimating Expected Returns

At least since Merton (1980), the consensus is that estimating µ is very difficult, more so

than estimating Σ−1. Even if a portion of assets’ expected return depends on the market’s

expected return µm, as in most asset price models, and µm is constant over time, it would

still take a very long time series to estimate µ accurately (Merton, 1980, p. 326). Of course,

the assumption of constant expected market return is unreasonable, and relaxing it makes

estimating µ even harder. Some solutions have been developed to deal with the estimation of

µ, which I briefly review in Section 3. Unfortunately, none of these solutions are satisfactory,

thus shifting researchers’ attention to estimating Σ−1. For the same reason, researchers have

accepted that most of MPT’s benefits for portfolio performance come mostly from reducing

risk, rather than increasing returns (Jorion, 1985). Indeed, Jagannathan and Ma (2003)

claim that “estimation error in the sample mean is so large that nothing much is lost in

ignoring the mean altogether” (p. 1652).

2.2.2 Estimating the Covariance/Precision Matrix

The standard approach employs the sample estimator of the covariance matrix and inverts

it to obtain Σ̂−1 = S−1
T . (In Section 3, I review newer methods for estimating Σ−1 directly.)

Using S−1
T raises four issues. The first is quasi-normative: it assumes that historical values of

covariances are useful estimates of their future values, a naive assumption according to some

theories of asset prices (Elton and Gruber, 1973). The second obstacle in using S−1
T is that

it requires estimating N(N+1)
2

parameters, a computationally intensive task. The third issue

the use of S−1
T creates is that when N > T , ST is not full rank and is thus non-invertible;

this necessitates the use of a pseudo-inverse. Moreover, even when ST is full rank, S−1
T is a

biased estimate of Σ−1 (Senneret et al., 2016). Finally, he largest limitation of using S−1
T is

that, in practice, it generates unstable and/or extreme portfolio weights, which are far from

optimal and are not reasonable representations of investors’ behavior.

Scholars take two approaches to interpreting the instability of portfolio weights con-
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structed through S−1
T . One approach treats it as the result of estimation error from ST

passing on to S−1
T and the portfolio weights. DeMiguel, Garlappi and Uppal (2009) find that

for portfolios constructed through S−1
T to outperform the naive 1/N portfolio, where wealth

is allocated equally across the N risky assets, more than 6, 000 months (50 years) of data are

required, even when N is only 50.15 The authors attribute the Markowitz portfolio’s under-

performance to small estimation errors from ST swinging portfolio weights to extreme values.

Yet, under this approach, using S−1
T can produce stable and sensible portfolio weights; if T

is sufficiently large, given N , to remove substantial estimation error in ST . On the contrary,

a different approach attributes the unstable weights that S−1
T generates to ill-conditioning

in the true (population) covariance matrix Σ, owing to the inherently high correlation in

asset returns. Brodie et al. (2009) argue that, even if Σ were known and ST were redundant,

inverting a large-N Σ would produce the same unstable weights that S−1
T produces—even

errors as small as those from rounding would be amplified enough to destabilize the inversion

of Σ. This means that, stable and optimal portfolio selection is impossible for large N , in-

dependent of T , due to the highly correlated nature of asset returns. Regardless of the cause

of unstable weights in the standard MPT solution, it is clear that alternative approaches are

needed to salvage MPT’s contribution to portfolio selection.

2.2.3 Instability Example

Before proceeding, it is worth illustrating the instability of the standard MPT solution, using

a simple example augmented from DeMiguel, Garlappi and Uppal (2009). Assume two assets

with annual returns of the same mean and standard deviation, 0.08 and 0.20, respectively,

and a correlation of 0.99. The standard MPT solution consists of relative weights w∗1 =

w∗2 = 0.5. Now assume that asset 1’s mean return is unknown and estimated at 0.09,

instead of its true value of 0.08. The standard MPT solution now yields w∗1 = 6.35 and

15In reality, investors face a much larger universe of assets (typically several thousands) and use a much shorter
time window to optimize their portfolio (typically 60–120 months), thereby multiplying the estimation error
in ST and the suboptimality of the respective weights.
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w∗2 = −5.35. Note that we obtain a completely different solution only because estimation

error shows that one asset’s mean return is slightly superior. A similar result obtains if

we instead decrease asset 1’s risk to 0.175, keeping both assets’ mean returns at 0.08, asset

2’s risk at 0.20, and correlation at 0.99: now w∗1 = 4.04 and w∗2 = −3.03. This example

demonstrates the sensitivity of the standard MPT solution to estimates of assets’ expected

return and covariance: the algorithm attempts to exploit the slightest difference in assets’

returns and/or risk in optimizing the objective function. It is for this reason that Michaud

(1989) labels the standard MPT solution an “estimation-error maximizer” (p. 33).

3 An Overview of Solutions

There are three broad approaches to improving MPT. The first involves reducing estimation

error for expected returns, with robust estimators and shrinkage estimators being the two

main tools to achieve that. The second approach for creating portfolios with stable and sen-

sible weights is to reduce estimation error in the (inverse) covariance matrix. This is a more

popular approach with more tools available to achieve it, including not just robust estimators

and shrinkage estimators, but also covariance matrices based on statistical models, sparse

graphical models, random matrix theory, and high-frequency data. The third approach for

stabilizing portfolio optimization targets portfolio weights directly, through robust optimiza-

tion techniques, explicit restrictions on the weights, or restrictions on the weights’ norm.

This section briefly reviews each approach.

3.1 Robust Estimation of Expected Returns

3.1.1 Robust Estimators

As mentioned in Section 2, estimating µ is prone to more error than estimating Σ−1, forcing

researchers to focus on the latter task. That said, researchers have explored two ways to

improve µ̂. First, instead of using the (sample) mean m = 1
T

∑T
t=1 rt to estimate (popu-
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lation) expected returns, we can use the (sample) truncated/trimmed mean or Winsorized

mean (Martin, Clark and Green, 2010). The trimmed mean is calculated after discarding

the k% most extreme values, while the Winsorized mean is calculated after replacing those

values with the next k% most extreme values (e.g. 1st and 10th decile replaced by 2nd and

10th, respectively). Both estimators are more robust to deviations from distributional as-

sumptions on returns (e.g. multivariate normality). However, if returns are non-stationary,

neither estimator, nor other robust estimators like the M-estimator, can provide unbiased

estimates of expected returns. Additionally, robust estimators require researchers to make

subjective decisions about tuning parameters like k.

3.1.2 Shrinkage Estimators

To improve performance in the face of non-stationary returns and to automate the selection of

tuning parameters, researchers have turned to Shrinkage Estimators. The shrinkage approach

begins with the observation that, much like uncertainty in actual expected returns (asset

risk), uncertainty in the estimate of expected returns (estimation risk) implies a loss of

investor utility (Jorion, 1985). Thus, the optimization problem should minimize utility loss

from selecting a portfolio based on sample estimates, instead of true values. In this line of

thought, the solution is clearly not to estimate each asset’s expected return individually, but

to select an estimator that minimizes utility loss from aggregate parameter uncertainty.

Jorion (1986) suggests using a Bayes–Stein estimator that shrinks each asset’s sample

mean mi to the grand mean m̄ = 1
N

∑N
i mi. The optimal amount of shrinkage is determined

by the data; namely, N , T , m̄,mT , and S−1
T .16 Simulations show that the shrinkage estimator

substantially reduces estimation risk, defined as the average loss of utility across repeated

16In particular, Jorion (1986) uses an empirical Bayes–Stein (shrinkage) estimator, to avoid using
theory-driven priors in determining the optimal amount of shrinkage θ∗. In particular, θ∗ =

N+2
(N+2)+(mT−m01N )ᵀTS−1

T (mT−m01N )
, where m0 =

1ᵀ
NS−1

T

1ᵀ
NS−1

T 1N
mT . This yields the shrunken estimated expected

returns vector µ̂shrink = (1 − θ∗)mT + θ∗1Nm0. As an alternative to tuning θ using data, Ruppert and
Matteson (2015) suggest a bootstrap approach (pp. 482–484).
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samples, and outperforms portfolios constructed using mT (Jorion, 1986).17 The author

concludes that the standard MPT approach vastly overestimates potential portfolio gains

from overweighting assets with high (estimated) expected returns, and argues that most

potential MPT gains come from reducing portfolio risk. This points to the importance of

correctly estimating the (inverted) covariance matrix.

3.2 Robust estimation of (inverse) covariance matrix

3.2.1 Robust Estimators

As mentioned above, there are several alternatives to S−1
T for estimating the (inverse) covari-

ance matrix. One approach is to use so-called Robust Estimators of Σ−1. Much like those

for µ, these estimators are less sensitive to extreme observations of assets’ co-movement.

DeMiguel and Nogales (2009) employ M- and S-estimators, which exhibit lower estimation

error than ST when the sample distribution of the underlying variables belongs to the neigh-

borhood of the assumed distribution (e.g. multivariate normal).18 Pfaff (2016) (Ch. 11)

reviews several alternatives, like the minimum volume ellipsoid estimator, the minimum co-

variance determinant estimator, and the orthogonalized Gnanadesikan–Ketterning (OGK)

estimator. Note that all these are estimators of Σ and not its inverse, thus requiring us to

invert the estimated matrices in order to use them as inputs to portfolio selection.

3.2.2 Model-Based: Single-Index

Statistical models of asset returns and covariances have been a popular tool in empirical

finance since the Nobel prize-winning work of Sharpe (1963, 1964). The latter developed

17Merton (1980) also uses a Bayesian approach to augment the estimator of expected returns, but focues on
market return and does not rely on a shrinkage estimator. Specifically, he uses prior information from the
Capital Asset Pricing Model (CAPM) to disaggregate expected market return into an expected risk-free
rate and an expected excess return rate. By allowing the latter to vary over time, Merton accounts for
non-stationarity of market returns.

18DeMiguel and Nogales (2009) go a step further than just using a robust estimator of ST , and integrate
robust estimation of portfolio inputs with portfolio optimization, an approach they label “robust portfolio
estimation”. Specifically, the authors solve a single non-linear optimization problem, selecting weights that
minimize an M- or S-estimate of portfolio risk.
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factor models; linear models of asset returns that include anywhere from one to dozens of

predictors (factors). The simplest factor model is the Single-Index Model (SIM), or one-

factor model or market model, which regresses stocks’ excess return on the excess return of

the market index (a capitalization-weighted portfolio of all stocks) (Sharpe, 1963).19 That

is, the SIM specifies the excess return for stock i as r̃i,t = αi + βir̃m,t + εi,t, for i = 1, . . . , N

and t = 1, . . . , T , where r̃m is excess return on the market index, αi and βi are parameters

to be estimated, and εi,t is random error, with E[εi] = 0, Var[εi] = σ2
εi

, Cov[εi, εj] = 0 ∀j 6= i,

and Cov[r̃m, εi] = 0.

Due to the theoretical structure that the SIM imposes on stock returns, it produces a

simple covariance matrix. Note that Var[r̃i] = σ2
i = β2

i σ
2
m + σ2

εi
and Cov[r̃i, r̃j] = σij =

βiβjσ
2
m, where σ2

m = Var[r̃m]. Thus, the covariance matrix is ΣSIM = ββᵀσ2
m + Σε, where β

is the length-N vector of β’s from the SIM regressions and Σε is the regression errors’ N -by-N

diagonal covariance matrix. In turn, the precision matrix becomes Σ−1
SIM = Σ−1

ε −
Σ−1
ε ββᵀΣ−1

ε
1

σ2
m

+βᵀΣ−1
ε β

.

Of course, the true SIM parameters are unknown, thus we replace β, σ2
m, and Σε with

their sample/regression estimates. A finite sample bias-correction is also required, thus the

estimated covariance matrix becomes Σ̂SIM = β̂β̂ᵀσ̂2
m + T−1

T−2
Σ̂ε, where β̂ contains the OLS

estimates of the slope parameter, σ̂2
m is the bias-corrected sample estimate of the market

index’s variance, and Σ̂ε diagonal contains the OLS estimates of the residual variances σ̂2
εi

.20

(Similar corrections apply to the inverse covariance matrix estimator.)

In addition to providing a model-based view of asset returns – a property that some

find normatively attractive – the SIM has three other advantages over the standard MPT

approach. First, SIM requires estimating only 2N+1 parameters to construct the covariance

matrix (N β̂i’s, N σ̂εi ’s, and σ̂2
m), versus the N(N+1)

2
parameters required by the standard

approach (exceeds 2N + 1 for N ≥ 4). Second, whenever we add a new asset to our sample,

we only need to estimate its β and σε to update our precision matrix, versus estimating the

19In practice, the market index is typically proxied by the S&P 500 or some similar index.
20This expression rests on the usual OLS property that the estimators of slope and residual variance (β̂i and
σ̂εi) are independent.
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asset’s variance and covariance with every other asset in our sample (N + 1 parameters)

and inverting our new covariance matrix to update our precision matrix. Finally, the SIM

approach only requires T > 2 observations to estimate β and σε for every asset (as well

as σ2
m) and thus to estimate the precision matrix. On the contrary, the standard approach

requires T > N .

That said, these are merely theoretical requirements for statistical identification. In

practice, as noted in Section 2, the standard approach requires T � N to estimate Σ

with reasonably low error, while fitting SIM regressions with few degrees of freedom result

in very noise estimates of β’s and σε’s, thereby adding noise to Σ̂−1
SIM . Moreover, in the

portfolio selection stage, both the standard and SIM approach to portfolio selection are

vulnerable to estimation error from using the sample mean returns vector mT (SIM is also

exposed to estimation error from σ̂2
m).21 Nevertheless, there is ample evidence that the

SIM approach produces portfolios that are much less sensitive to estimation error than the

standard approach and, therefore, perform better across a range of risk and return metrics

(Senneret et al., 2016).

3.2.3 Model-Based: Adjusting β’s

A popular technique for reducing noise in Σ̂−1
SIM is to use Adjusted β estimates. Blume

(1975) suggests a three-step approach: first, fit SIMs for N stocks using returns from two

adjacent periods of equal length (call the β estimates from these periods β̂t and β̂t−1); second,

regress β̂t on β̂t−1 and obtain coefficients γ̂0 and γ̂1 capturing the temporal relationship

between β’s; third, insert β̂t in the beta-adjustment equation to predict the next period’s

β’s (β̂t+1 = γ̂0 + γ̂1β̂t). In practice, adjusted β’s are higher (lower) for stocks with lower

(higher) unadjusted β’s. Though not an explicit goal of Blume (1975), adjusted β’s can be

combined with the usual ingredients (σ̂2
m and Σ̂−1

ε ) to produce a beta-adjusted Σ̂−1
SIM for

21In practice, many researchers use a ranking approach with a cut-off rule to select the optimal portfolio, which
requires the same parameters as the standard approach, but does not require inverting Σ̂SIM (Elton et al.,

2009, Ch. 9). This approach yields the same portfolio as the standard approach (w∗ = Σ̂−1
SIMmT ), while

simplifying computation furthermore.

16



portfolio selection. One limitation of this approach is that adjusted β̂’s drift upwards over

time: if the average β̂ increases between t− 1 and t, then predicting β̂t+1 through γ̂0 + γ̂1β̂t

will invariably produce a larger estimate (Elton et al., 2009).

An alternative, Bayesian technique for adjusting β’s is provided by Vasicek (1973): to

shrink individual stocks’ β estimates towards the average β estimate in proportion to each

estimate’s precision. In particular, Vasicek (1973) suggests the formula β̂i,t+1 =
σ̂2
βi,t

σ̂2
β̄t

+σ̂2
βi,t

β̄t +

σ̂2
β̄t

σ̂2
β̄t

+σ̂2
βi,t

β̂i,t ∀i, t, where β̂i,t is the unadjusted β for stock i in period t, σ̂βi,t is its standard

error, β̄t is the mean unadjusted β across N stocks for period t, and σ̂β̄t is its standard error.

As the formula suggests, the more noisily a stock’s βi is estimated, the more it is shrunk

towards β̄. Unfortunately, this also induces a downward drift in the average adjusted β over

time. Because βi’s are shrunk towards β̄ in proportion to their standard error, larger βi’s are

invariably shrunk by a larger percentage of their distance from β̄ than small βi’s are raised.

Thus, the average (adjusted) β̂i,t+1 will invariably be lower than the average (unadjusted)

β̂i,t.

Despite their biases, though, both Blume’s and Vasicek’s adjustments result in more ac-

curate forecasts of future β’s versus the unadjusted historical β’s (Klemkosky and Martin,

1975). Moreover, both types of adjusted β’s produce covariance matrices that are signif-

icantly better forecasts of future periods’ covariance matrices than the sample (historical)

covariance matrix (Elton, Gruber and Urich, 1978). In short, in addition to simplifying

computation for optimal portfolio selection, the SIM – with or without β-adjustment – also

reduces estimation error in a key input of MPT, the inverse covariance matrix.

3.2.4 Model-Based: Multi-Index

Recalling that the SIM only includes one factor, the market return, it is possible to add

more factors to account for non-market-related covariance in asset returns. Multi-index

models (MIMs) are motivated by the observation that even after removing asset covariance

owed to the market index, substantial covariance remains among stocks belonging to the
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same industry (King, 1966). MIMs come in several forms, but all assume that stocks’ excess

return is a linear function of the excess return on the respective industry index, which itself

is a linear function of the excess return on the market index.

In the formulation of Cohen and Pogue (1967), the excess return of stock i as r̃i,t =

αi+βiĨj,t+εi,t, where Ĩj,t is the excess return of industry j (all other variables are interpreted

as in the SIM and the SIM’s assumptions about εi,t carry over). In turn, the excess return

on industries is modeled as Ĩj,t = aj + bj r̃m,t + ej,t, where aj and bj are parameters to be

estimated and ej,t are errors with E[ej] = 0, Var[ej] = σ2
ej

, Cov[ej, ej′ ] = 0 ∀j′ 6= j, and

Cov[εi, ej] = 0.22 As in the SIM, MIMs produce a model-based variance-covariance structure:

σ2
i = β2

i (b
2
jσ

2
m + σ2

ej
) + σ2

εi
, σik = βiβk(b

2
jσ

2
m + σ2

ej
) for i and k are in the same industry j,

and σik = βiβkbjblσ
2
m for i in industry j and k in industry l. The resulting covariance

matrix is ΣMIM = ββᵀ � (bbᵀσ2
m + Σe) + Σε, where � is the element-wise product, b

is the length-N vector of bj’s from the industry regressions, Σe is the block-diagonal N -

by-N covariance matrix of errors from the industry regressions, and other parameters are

defined as in the SIM.23 Once again, true values are unknown, so we substitute them with

regression/sample/historical estimates to obtain the covariance matrix.24

In terms of portfolio performance, MIMs have produced relatively weak results: though

they estimate the historical covariance matrix more accurately than the SIM, MIMs do not

forecast future covariance matrices more accurately and, consequently, produce portfolios

22MIMs can be adapted to include many, uncorrelated industry indexes on the right-hand-side (the indexes
can be orthogonalized through a technique like principal components analysis). Though this is useful for
stocks of companies that trascend industry boundaries (e.g. Tesla, Inc. is viewed as an auto manufacturer,
battery producer, and software company), for most stocks the addition of industry indexes might add more
noise than information to the regressions (Elton et al., 2009, p. 159).

23Before expressing the covariance matrix in this form, we must group stocks by industry and order them to
reflect that grouping in all vectors/matrices. Note that in b all elements corresponding to stocks in the same
industry have the same value (e.g. b1 for industry 1, b2 for industry 2, etc.). Similarly, within each block in
Σe all elements have the same value (i.e. σe1 for block/industry 1, σe2 for block/industry 2, etc.), but blocks
do not have to be of the same size (e.g. 5 stocks might belong in industry 1, 7 stocks in industry 2, etc.).

24Note that the MIM requires 2N + 2J + 1 inputs, where J is the number of industries, versus the 2N + 1
parameters of the SIM. I omit the full covariance and precision matrix expressions using sample estimates to
conserve space. Moreover, more so than in the SIM, most practicioners resort to the ranking and cut-off rule
approach to select optimal portfolios, instead of the standard approach (w∗ = Σ̂−1

MIMmT ) (Elton, Gruber
and Padberg, 1977).
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with inferior performance (Elton et al., 2009, pp. 159–162). Moreover, Chan, Karceski

and Lakonishok (1999) find models with no more than three indexes outperform those with

additional ones. In short, adding complexity to the SIM seems to import more noise than

information, not least because it is hard to attribute covariance among stocks to factors

other than the market.

3.2.5 Model-Based: Averaging Models

In contrast to index models (single or multi-index) stand models that try to reduce the

noise inherent in stocks’ covariance by averaging the latter. The simplest model is the

Constant Correlation Model (CCM), which assumes that all stocks have the same correlation,

equal to the sample (historical) mean correlation (ρ̂T = 2
N(N−1)

∑N−1
i=1

∑N
k=i+1 ρ̂ik) (Elton and

Gruber, 1973). The resulting covariance is σik = ρ̂Tσiσk ∀i, k, thus the covariance matrix is

ΣCCM = P � σσᵀ, where P is a N -by-N matrix with 1’s on its diagonal and ρ̂T as its off-

diagonal elements and σ is the N -vector of assets’ standard deviation. To form the optimal

portfolio, the CCM has to be combined with the ranking and cut-off rule approach (Elton,

Gruber and Padberg, 1976). Crucially, the CCM implicitly assumes that the historical

correlation matrix only contains information about the the average correlation for future

periods, but no information about pairwise correlations’ deviation from that average. Clearly,

this is a strong assumption that can be relaxed.

One way to do so is by allowing average pairwise correlations to differ by industry and also

between industries, an approach known as the Multi-Group Model (MGM). In particular,

the MGM assumes that all stocks within the same industry have the same correlation,

estimated as the mean sample pairwise correlation between stocks in that industry (ρ̂jj =

2
Nj(Nj−1)

∑Nj−1
i=1

∑Nj
k=i+1 ρ̂ik, j = 1, . . . , J , where Nj is the number of stocks in industry j),

while stocks in different industries have a correlation equal to the mean sample pairwise

correlation between stocks in those industries (ρ̂jl =
∑Nj
i

∑Nl
k ρ̂ik

Nj(Nl−1)
, j 6= l). Again, the MGM is

usually solved through a ranking and cut-off rule approach (I omit the complicated expression
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of the full covariance matrix, ΣMGM) (Elton, Gruber and Padberg, 1977).

In terms of performance, Elton et al. (2009, pp. 162–163) summarize the literature’s

findings: that both ΣCCM and ΣMGM are more accurate forecasts of future covariance

matrices than ST , ΣMIM , and, more importantly, ΣSIM . Relatedly, both averaging models

produce portfolios with superior performance than competing models, across a range of

metrics. However, when comparing CCM to MGM, the authors find that relative forecasting

accuracy and portfolio performance vary by the time period used to evaluate them. In any

case, among model-based covariance matrices, it seems that averaging models are dominant.

3.2.6 Shrinkage Estimators

Another approach, which carries over from the robust estimation of µ but is often combined

with model-based estimates of Σ, is Shrinkage. Again, the rationale behind shrinkage is to

reduce the estimator’s variance – and the utility loss stemming from estimation error – by

shrinking it towards an (invariant) constant. This approach becomes more suitable (i) the

less the bias introduced by the shrinkage target matrix, (ii) the larger the noise in the data,

and (iii) the larger N/T . The first two conditions also apply to shrinking µ; the third one is

much more relevant for shrinking Σ, where each new asset adds N new terms to Σ that we

have to (noisily) estimate. In general, the idea is to estimate Σ̂shrink = (1−δ∗)ST +δ∗Σ̂target,

where δ∗ is determined by a data-driven algorithm and Σ̂target is chosen through some prior

belief about asset return covariance. The literature has explored several target matrices,

most stemming from the factor and index models reviewed above. Crucially, due to the

nature of these models, Σ̂target is usually estimated with much less error than ST , but factor

models are arguably mis-specified and hence Σ̂target is biased. As such, shrinkage attempts

to strike a balance between the biased but relatively precisely estimated Σ̂target and the

unbiased but noisily estimated ST .

In terms of shrinkage target, Ledoit and Wolf (2003b) suggest Σ̂SIM , while Ledoit and

Wolf (2003a) recommend Σ̂CCM (both studies derive formulas for selecting δ∗). Crucially,
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Ledoit and Wolf (2003a) find that shrinkage towards the CCM covariance matrix outperforms

both the standard and CCM approach, and Disatnik and Benninga (2007) find that simpler

shrinkage targets produce portfolios that perform best. However, newer work has focused

on non-linear shrinkage estimators (see Senneret et al. (2016, pp. 3–4) for a review). Note

that most studies focus on shrinking Σ, then inverting it for portfolio selection. Recently,

researchers have considered directly shrinking Σ−1 (Kourtis, Dotsis and Markellos, 2012;

DeMiguel, Martin-Utrera and Nogales, 2013).

3.2.7 Sparse Graphical Models

Another model-based approach for estimating the asset covariance matrix involves Sparse

Graphical Models (SGMs).25 SGMs model random variables (stock returns) as nodes and the

dependencies between them as edges; the ensuing graph gives us a visual representation of the

joint distribution of stock returns. Like shrinkage estimators, from a Bayesian perspective,

SGMs implicitly use prior information on the covariance matrix’s structure. In the case of

stocks, this prior information is usually employed to impose sparsity on the covariance or

precision matrix. (A sparse matrix is one with few non-zero off-diagonal elements.) Sparsity

is motivated from both a theoretical and computational perspective.

Theoretically, the preference for sparsity depends on whether our prior information relates

to the covariance or precision matrix—a sparse covariance matrix will yield a dense covariance

matrix, and vice-versa. A sparse Σ implies that most stocks’ returns are independent, an

assumption that might only be valid for stocks in different industries and/or markets. Thus,

a more reasonable structure for Σ is block-sparsity: zero covariance for stocks in different

industries/markets (grouped as blocks in the matrix) and non-zero covariance for stocks in

the same industry/market. A sparse Σ−1, on the other hand, implies that most stocks are

conditionally independent. One way to justify this prior is by assuming that stock returns are

25Also referred to as Probabilistic Graphical Models. When edges between nodes are undirected, as in the
case of modeling the asset covariance matrix, graphical models are also known as Markov Graphs, Random
Networks, or Random Fields.
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linearly related, such that knowing a subset of stocks makes remaining stocks (conditionally)

independent. (For both Σ and Σ−1 matrix, more (conditional) independencies between

stocks result in a sparser matrix.) Another theoretical motivation for sparsity, which applies

to both Σ and Σ−1, is a preference for parsimony. À la Occam’s Razor, investors might

seek the least complex and most compressed representation of Σ or Σ−1, thereby penalizing

matrices with many non-zero entries (more in Section 3.3.3).

In terms of computation, sparse matrices are easier to store and manipulate, as they

have fewer non-zero entries. More importantly for the purposes of portfolio selection, for

both Σ and Σ−1, sparsity can reduce estimation error. Because small estimated non-zero

off-diagonal elements might be owed to noise, we might want to simply nullify them and

instead focus on estimating large elements.26 The key to reducing estimation error through

sparse graphical models is deciding how many and which elements of Σ or Σ−1 to set to

zero. To make this decision in a data-driven way, researchers turn to algorithms that balance

model accuracy and complexity.

The state-of-the-art algorithm for sparse estimation of covariance/precision matrixes is

the Graphical LASSO (GLASSO) (Friedman, Hastie and Tibshirani, 2008). The model

assumes that variables (stock returns) are distributed Multivariate Normal and maximizes

the log-likelihood of the covariance/precision matrix, penalized by the `1-norm (||X||1 =∑N
i

∑N
j |Xij|) and adjusted by a tuning parameter τ , to be selected from the data.27 That is,

GLASSO’s estimated covariance matrix is Σ̂GLASSO = argminΣ log(det[Σ])− Tr(STΣ−1)−

τ ||Σ||1. However, this results in a non-convex problem, which is very difficult to solve,

hence there is little work on sparse estimation of Σ for portfolio selection (Fan, Liao and

Mincheva, 2011, 2013). On the contrary, more studies have applied GLASSO to estimating

Σ−1 (Awoye, 2016; Goto and Xu, 2015; Senneret et al., 2016). Defining Θ = Σ−1, GLASSO’s

26This is known as a screening effect/rule, and a similar rationale underlies penalized regressions that induce
sparsity in the regression coefficient vector, like the LASSO and its variants (Tibshirani, Wainwright and
Hastie, 2015).

27Note that `1-norm penalization, in fact, is used to approximate `0-norm penalization, which directly penalizes
the number of non-zero elements but produces a non-convex optimization problem.
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estimated precision matrix is Θ̂GLASSO = argminΘ log(det[Θ]) − Tr(STΘ) − τ ||Θ||1. This

problem is typically solved through the Pathwise Coordinate Descent algorithm (Bien and

Tibshirani, 2011). In terms of performance, Awoye (2016) finds that portfolios selected

by Θ̂GLASSO outperform those selected through the SIM, shrinkage, and RMT (see next

paragraph) approaches across a range of metrics, N/T ratios, and datasets on asset returns.28

Similar findings for GLASSO are reported in Senneret et al. (2016) versus several factor and

shrinkage models.

3.2.8 Random Matrix Theory

A different model-based approach to covariance matrix estimation stems from econophysics

and is known as Random Matrix Theory (RMT). Based on the spectral properties of the

asset covariance matrix, RMT’s application to MPT begins with the observation that Σ’s

smallest and largest eigenvalues reflect minimum and maximum portfolio risk, respectively,

and that Σ’s eigenvectors determine optimal portfolio weights.29 Crucially, Laloux et al.

(1999) show that the smallest eigenvalue is particularly sensitive to estimation error; thus,

using the latter results in portfolios with significantly underestimated risk. Relatedly, the

authors note that the density of eigenvalues and the structure of eigenvectors of the sample

correlation matrix C applied to standard portfolios of stocks (e.g. S&P 500) is statistically

indistinguishable from that of a purely random matrix. For this reason, Laloux et al. (2000)

develop an approach for filtering C to distinguish between eigenvalues that contain real

information from those containing noise.30 Specifically, the authors compare its eigenvalues

to those of a purely random “null hypothesis” matrix M (dimensions T × N). The latter

follow a Marchenko-Pastur distribution with density f (λ) = T
2Nπλσ2

√
(λmax − λ) (λ− λmin),

28Note that, due to the sparsity induced via the `1 penalty, GLASSO is able to estimate Θ even when N < T .
29Senneret et al. (2016) note that RMT implicitly extends factor models, by accounting for the fact that the

actual number of factors that determine asset returns and covariance is unknown—for this reason, RMT
applied to MPT is also known as the “latent factors approach” (p. 9).

30A key goal of filtering C is to eliminate very small eigenvalues, which are most likely products of estimation
error. This is because the corresponding portfolios display artificially low risk – or even none – with positive
expected returns, thereby “tricking” MPT optimization into selecting them.
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where σ2 is the variance ofM and λmaxmin = σ2(1+ N
T
±2

√
N
T

). All λ > λmax in C are retained,

while λ < λmax are deleted or replaced with the average λ above λmax. In short, RMT treats

deviations from M as hints of valuable information in the respective eigenvalues of C, and

uses the corresponding eigenvectors to select the optimal portfolio (after converting C to

a covariance matrix). However, El Karoui (2008) shows that, unless T/N is very large,

identifying the significant eigenvectors of Σ through RMT is very difficult. Nevertheless, in

terms of performance, Pantaleo et al. (2011) find that RMT estimators produce portfolios

with comparable performance to shrinkage estimators.

3.2.9 High-Frequency Data

An entirely different approach involves using High-Frequency Data on assets’ returns to es-

timate their covariance. The rationale behind this approach is intuitive: more granular data

increases T/N , thereby potentially decreasing error in ST . The downside of this approach is

that, due to the noisiness of asset returns, higher-dimension data can add more noise than

information to covariance estimation. Additionally, as we increase the data’s frequency, re-

turns tend to deviate more from the normal distribution, thereby burdening the estimation

of expected returns. Perhaps for this reason, Jagannathan and Ma (2003) find that portfo-

lios constructed through covariance estimation of daily versus monthly returns do not differ

much. Similarly, Liu (2009) compares portfolios constructed by estimating ST on data of

different frequencies and finds that, if at least 12 months of data are used in the optimization,

portfolios’ performance is statistically indistinguishable. For these reasons, high-frequency

data has not received much attention from researchers.

3.3 Robust Selection of Portfolio Weights

A third approach to repairing the standard MPT framework targets the optimization stage,

instead of its inputs µ and Σ. There are three ways to alter the optimization stage: incorpo-

rate uncertainty in the optimization, restrict portfolio weights, or use penalized optimization.
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Note that all of these methods rely – to differing extents – on the standard sample estimates

of portfolio inputs, mT and ST .

3.3.1 Robust Optimization

Some researchers argue that, instead of optimizing a function based on noisy estimates of

portfolio inputs µ and Σ−1, we should directly incorporate parameter uncertainty and es-

timation error in the optimization problem. In other words, we should use an optimization

technique that produces portfolio weights that are robust to (minor) changes in portfolio

inputs—an approach labeled Robust Optimization (see Pfaff (2016, Ch. 10) for a review).

Goldfarb and Iyengar (2003) focus on the expected returns vector – whose uncertainty is

more problematic for portfolio selection – and use uncertainty sets to bound the pertur-

bations in parameter inputs and their effect on portfolio weights. Specifically, the authors

assume observed asset returns are determined by the multi-factor model r = µ+ V ᵀf + ε,

where f ∈ RM is the vector of random returns of the M < N factors that drive asset returns,

V ∈ RM×N is the factor loading matrix, and other terms have their usual meaning. Cru-

cially, µ, V , and the covariance matrices of f and ε, F and Σε, respectively, are unknown

but bounded within well-defined sets.31 Using this model, Goldfarb and Iyengar (2003) show

that the uncertainty sets for µ̂ and Σ̂ are parameterized by the data r and f , the estimators

used to recover the model’s parameters µ, V , F , and Σε, and a parameter ω that tunes the

confidence level. This allows the researcher to make probabilistic guarantees about the re-

sulting portfolios’ performance. Moreover, an attractive feature of this optimization problem

is that, computationally, its difficulty is comparable to that of the quadratic programming

required by the standard MPT problem (1). Tütüncü and Koenig (2004) extend this ap-

proach to produce a min-max solution to portfolio selection. Namely, the authors select

weights that, for a target level of returns, minimize portfolio risk assuming the maximum

possible value of risk within the uncertainty set. However, this problem requires a more

31Note that the model implies Σ = V ᵀFV + Σε.
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complicated optimization algorithm.

3.3.2 Restricting Weights

A different way to alter the portfolio optimization stage is to restrict portfolio weights.

Mathematically, this is equivalent to adding one or more constraints to the standard MPT

optimization problem (1). Using sample estimates of portfolio inputs, Jagannathan and Ma

(2003) find that restricting short-sales (i.e. forcing all weights to be non-negative) decreases

optimal portfolio risk. Moreover, optimal No-Short-Sales (NSS) portfolios with Σ estimated

through ST perform comparably to unrestricted portfolios constructed with Σ estimated

through factor models, shrinkage estimators, or high-frequency data. The reason short-

sales constraints help was illustrated in the example of Section 2.2.3: short-selling multiplies

portfolio instability owed to estimation error. That is, short-selling produces portfolios with

large negative weights on assets with negative returns and/or high correlations with other

assets, even when these attractive properties are the product of noise.

Interestingly, Jagannathan and Ma (2003) demonstrate that the NSS portfolio can also

be obtained by shrinking the covariance matrix. Because assets with high (low) correlation

with other assets, all else equal, receive large negative (positive) weights in unrestricted

optimization, forcing all weights to be non-negative is analogous to shrinking (inflating)

the rows in Σ corresponding to high- (low-)correlation assets. In particular, the authors

show that restricting short-sales is equivalent to unrestricted portfolio optimization with

ΣNSS = ST + (δ1ᵀ
N + 1Nδ

ᵀ) − (λ1ᵀ
N + 1Nλ

ᵀ), where δ and λ are length-N vectors of

the Lagrange multipliers from non-negativity constraints and maximum-weight constraints,

respectively, added to the standard MPT problem (1).32 This correspondence between short-

sale constraints and covariance matrix shrinkage is another way to understand why restricting

weights can reduce estimation error and stabilize portfolio optimization. Despite the benefits

of short-sale constraints for the standard approach, DeMiguel et al. (2009) find that they do

32Note that the δ’s determine how much to shrink the rows in ST corresponding to high-covariance assets and
the λ’s determine how much to inflate the rows corresponding to low-covariance assets.
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not improve the performance of all optimization approaches: restricting short-sales when Σ

is estimated through factor models or shrinkage estimators results in inferior portfolios. In

other words, combining portfolio optimization techniques does not always result in a whole

greater than the sum of its parts.

DeMiguel, Garlappi and Uppal (2009), in turn, suggest an even more radical restriction on

portfolio weights: setting all weights equal to 1/N , i.e. using an equally weighted portfolio.

Surprisingly, using several different datasets and a range of performance metrics, they find

that the 1/N allocation matches or beats 14 different portfolio selection methods, including

short-sale constraints. In theory, some of these methods can outperform the equally weighted

portfolio, but only if T exceeds N by dozens of orders of magnitude—an unrealistic data

requirement. The authors attribute the failure of competing methods to beat the naive

1/N allocation to the insurmountable nature of estimation error in portfolio inputs. Even

though these methods lessen the optimization’s dependence on ST and mT , estimation error

is inherently so large that optimal diversification rarely beats naive diversification. The

authors also offer a general reason for constraining weights, through the 1/N rule or other

rules, over alternative approaches: weight constraints can be derived from asset-pricing

theory and result in interpretable allocations.33 The same cannot be said for constraints on

assets’ moments.

3.3.3 Penalized Optimization

A related approach to constraining weights is Penalized Optimization (also known as regu-

larized optimization). The latter involves minimizing the sum of portfolio risk and a penalty

term that is a function of portfolio weights. This approach is similar to weight restrictions

in that both approaches constrain/shrink/restrict weights. However, penalized optimization

constrains the total size (norm) of weights, while weight restrictions constrain each weight.

33Behr, Guettler and Miebs (2013) develop a method for flexibly bounding each portfolio weight, and demon-
strate that their approach nests several others. Namely, they choose bounds that minimize the ex ante mean
squared error of covariance matrix entries.
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Different penalties on weights induce different properties in the resulting portfolio. The

most popular penalty is the `1-norm, which induces sparsity in the portfolio weight vector,

much like it does in the covariance matrix for sparse graphical models (Section 3.2.7).34 In

practice, Sparse Optimal Portfolios involve active positions on relatively few assets and short

positions of moderate magnitude. The first application of sparse portfolio optimization is

Brodie et al. (2009). I briefly review their approach.

We begin by noting that Σ = E[(r − µ)(r − µ)ᵀ] can be rewritten as E[rtr
ᵀ
t ] − µµᵀ.

Recalling that the objective function in Problem 1 is wᵀΣw and the target returns con-

straint (1b) is wᵀµ = r∗, after some manipulation the objective function can be rewritten

as E[(r∗ −wᵀrt)
2]. (Recall that there is also the allocation constraint (1c), wᵀ1N = 1.) Re-

placing expectation with sample average and µ with its sample estimate mT , the objective

function becomes 1
T

∑T
t (r∗−wᵀrt)

2 and the target returns constraint becomes wᵀmT = r∗.

(The allocation constraint remains the same.) Notice that this problem is equivalent to a

multivariate regression problem with panel data (i.e. given data, choose coefficients that min-

imize sum of squared deviations from response), with r∗ as the response vector y (yt = r∗ ∀t),

w as the coefficient vector β, and rt as the predictor vector xt. Adding, an `1 penalty to

the objective function (||w||1 =
∑N

i |wi|), plus a tuning parameter τ , the sparse portfolio

optimization problem becomes

w[τ ]
∗ = argmin

w

∑T
t (r∗ −wᵀrt)

2 + τ ||w||1 (6a)

s.t. wᵀmT = r∗ (6b)

wᵀ1N = 1 (6c)

where 1/T has been absorbed in τ . In other words, Brodie et al. (2009) reformulate the

standard MPT problem (1) as a LASSO regression problem with two added constraints

(Tibshirani, 1996).

34Sparse optimization methods have been popularized by the machine learning literature during the last 20
years, but have only appeared in the portfolio selection literature during the last decade.
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To solve this problem, the authors use a variant of the homotopy / Least-Angle Re-

gression (LARS) algorithm (Efron et al., 2004). The latter applies to unconstrained `1-

penalized regression, thus the authors augment LARS to account for the two constraints

above. In particular, given assets’ mean returns and the target returns level, they first

prescribe the affine subspace that satisfies the target returns and allocation constraints:

{H : w ∈ RN | wᵀmT = r∗ ∩ wᵀ1N = 1}. Then, they solve the problem w
[τ ]
∗ =

argminw∈H
∑T

t (r∗ − wᵀrt)
2 + τ ||w||1. Starting from very large values, they gradually de-

crease τ and solve w
[τ ]
∗ (a linear system) only at breakpoints of the solution path—points

where the slope changes. The locus of solutions w
[τ ]
∗ moves through RN on a piecewise affine

path, which is stored (see online appendix in Brodie et al. (2009) for more details). Along

that locus, another quantity that is stored is the active set : the number of non-zero weights.

Typically, as τ increases, the active set shrinks and the portfolio becomes sparser.35

The approach of Brodie et al. (2009) produces four interesting insights into penalized

portfolio optimization. First, it is easy to show that the `1-norm only penalizes negative

weights.36 In other words, sparse optimization limits shorting. Relatedly, because the `1

penalty constrains negative weights’ norm, it limits total shorting, unlike imposing individual

constraints on weights as in Jagannathan and Ma (2003). Limits on total shorting are closer

to actual investor behavior, which often takes the form of rules like the 130/30 portfolio

(long positions equal to 130% of wealth, short positions equal to 30% of wealth). A second

interesting result from Brodie et al. (2009) is that, if we select an extremely high value of

τ , we obtain a very sparse portfolio consisting only of (weakly) positive weights. In fact,

that portfolio is the same as the one obtained by solving the standard MPT problem (1)

35Note that penalized portfolio optimization still relies on the usual portfolio inputs: Brodie et al. (2009)
use the sample estimator mT for expected returns, and other authors that have reformulated the penalized
portfolio optimization to include the covariane matrix (e.g. DeMiguel et al. (2009)) use ST to estimate it.
Fortunately, Henriques and Ortega (2014) find that the perfromance of `1-penalized optimization is robust
to using different estimators for µ and Σ.

36To see this, note that the allocation constraint implies
∑
wi≥0 wi +

∑
wi<0 wi = 1 ⇔

∑
wi≥0 wi = 1 −∑

wi<0 wi. This allows us to rewrite the penalty term τ
∑N
i |wi| in the objective function as τ(

∑
wi<0 |wi|+∑

wi≥0 wi) = τ(
∑
wi<0 |wi| + 1 −

∑
wi<0 wi) = τ(

∑
wi<0 |wi| −

∑
wi<0 wi) + τ = 2τ

∑
wi<0 |wi| + τ , where

the latter τ does not affect optimization.
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with a short-sales restriction, i.e. the NSS portfolio of Jagannathan and Ma (2003).37 The

equivalence between short-sales restrictions and very high `1-penalization underscores the

destabilizing effect of short-selling on portfolio selection. A third noteworthy feature of the

`1-norm approach is that how many assets appear in the active set is determined by τ , but

which assets appear in the active set is implicitly determined by Σ (or its sample counterpart

ST ).38 Once again, this emphasizes the importance of assets’ covariance matrix for MPT.

Finally, and relatedly, the stabilizing effect of the norm penalty on portfolio selection (see

next paragraph) is due to its effect on the covariance matrix (this also holds for other norm

penalties I review below). Namely, by appropriately constraining weights’ size, we reduce

the optimization’s sensitivity to colinearities in asset returns. This is analogous to reducing

estimation error for Σ−1, one of two sources of portfolio instability.

In addition to the interesting points revealed above, sparse optimal portfolios display

four advantages. First and foremost, they reduce the negative effect of estimation error on

portfolio selection. Fan, Zhang and Yu (2012) prove that, for a wide range of values of the

penalty term, the sparse optimal portfolio is robust to estimation error in portfolio inputs.

Specifically, the authors show that estimation risk is bounded by a quadratic function of

the `1-norm of portfolio weights. Thus, constraining weights is equivalent to constraining

estimation risk (Li, 2015). Moreover, Fan, Zhang and Yu (2012) demonstrate that the

true and empirical sparse optimal portfolio yield roughly the same utility, and theoretical

and empirical risk are approximately equal. A second benefit of sparse portfolios is that

their small number of active positions implies low brokerage and other transaction costs

(e.g. trading commissions, bid-ask spreads), since investors have to execute fewer trades.39

37To see why the max-τ portfolio is the NSS portfolio, first note that the `1 penalty on weights is equivalent to
adding a constraint that the sum of weights’ absolute value must be lower than some value w̄. The minimum
w̄ that is consistent with the allocation constraint is 1; a lower w̄ would violate the allocation constraint,
as weights cannot sum to 1 if absolute weights sum to less than 1. Given that, note that, if any weight is
negative, it is impossible for weights to sum to 1 (allocation constraint) and absolute weights to sum to 1
(min-w̄ constraint). In other words, the max-τ portfolio can only have weakly positive weights, i.e. is the
NSS portfolio.

38Though Σ (nor ST ) appear in the sparse optimization problem, note that the objective function penalizes
assets’ relative deviations from the target returns level.

39For institutional investors, transaction costs are less significant, as they benefit from economies of scale and
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Relatedly, sparse portfolios are very attractive to investors facing liquidity constraints (e.g.

margin requirements by their broker), and hence seek to minimize leveraged positions, short

or long. A third benefit of sparse portfolios is that they tend to be more stable; changes in

assets’ expected return and covariance result in smaller changes for sparse portfolios versus

non-sparse ones. This minimizes the time spent opening, rebalancing, and closing positions

on assets. The fourth advantage of sparse portfolios is that they reflect a cognitive preference

for parsimony, which is embedded in many domains of rational human behavior (Gabaix,

2014).

However, `1-penalized portfolios are not without limitations. Significant criticisms of

using the `1 penalty is that it often results in under-diversified portfolios with extreme

weights (Yen, 2015), that it produces biased estimates of large weights (Fastrich, Paterlini

and Winker, 2015), and that produces intertemporally unstable portfolios when assets are

highly correlated (De Mol, 2016).40 Though these criticisms have some theoretical basis, they

lose their importance if `1-penalized portfolios still perform better than competing methods’

portfolios—a claim that must be assessed empirically (more below). A less significant crit-

icism of `1-penalization is that, even though the `1-norm is the only penalty that induces

sparsity while being a convex combination of weights, it nonetheless creates a tough opti-

mization problem without a closed-form solution (De Mol, 2016). Similarly, the non-linear

shrinkage induced by the `1-norm obscures determination of the efficient frontier; thus, for a

given parameter, we have to trace the efficient frontier by solving the optimization problem

point-by-point for each value of target returns (De Mol, 2016).

Partly due to the limitations of the `1-norm, DeMiguel et al. (2009) develop a broader

approach to penalized optimization, A-norm penalization. To do this, the authors supple-

ment the standard MPT problem (1) with the additional constraint wᵀAw ≤ δ, where A is

a N×N positive-definite matrix and δ > 0. Their approach reveals some interesting nuances

market power.
40The last criticism is due to the LASSO’s well-known instability in selecting active coefficients (weights) when

predictors (asset returns) are highly correlated. In the context of portfolio selection, this instability manifests
itself as high portfolio turnover. This matters only insofar as turnover is a criterion for evaluating portfolios.
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of penalized portfolio optimization. First, the authors show that the `1-norm imposes an

upper limit on total shorting, equal to δ−1
2

. Note that a larger δ (weaker penalty) allows

more shorting, while δ = ∞ yields the standard (short-sale unconstrained) optimal portfo-

lio. Second, A-norm penalized portfolios are equivalent to the optimal portfolios obtained

by shrinking ST towards A. For example, solving the A-norm penalized optimization with

A = Σ̂SIM results in the same portfolio as solving the standard optimization with ST shrunk

towards the single-index model’s matrix; that is, the shrinkage estimator suggested by Ledoit

and Wolf (2003b) (Section 3.2.6). Similarly, setting A = Σ̂CCM yields the same portfolio as

shrinking ST towards the constant correlation model’s matrix; i.e. the approach of Ledoit

and Wolf (2003a) (Section 3.2.6). Once again, these examples underline the connection be-

tween different portfolio optimization methods and shrinking (elements of) the covariance

matrix. Third, the special case ofA = IN results in `2-norm penalization. More importantly,

reformulating the portfolio problem from an optimization with the constraint wᵀINw ≤ δ

to a `2-penalized regression problem, as Brodie et al. (2009) do for the `1-norm, results in

a Ridge Regression problem (with a tuning parameter and two added constraints) (Hoerl

and Kennard, 1970). Though it does not induce sparsity, Ridge regression is more stable

than LASSO, and it also admits a closed-form solution (De Mol, 2016). Fourth, DeMiguel

et al. (2009) give interesting Bayesian interpretations to the use of various norms in portfolio

optimization. For example, if investors’ prior is that portfolio weights are i.i.d. following the

Double Exponential, then their maximum a posteriori estimate are the weights produced by

`1-penalized optimization.41 Finally, the authors provide a useful algorithm for tuning the

penalty parameter (δ in their formulation): k-fold cross validation (k-CV) to choose the δ

that minimizes mean portfolio risk across samples. However, in addition to being computa-

tionally intensive, Yen (2015) argues that k-CV produces unstable sequences of the penalty

parameter, which can weaken portfolio performance to the point of nullifying gains from

41The A-norm portfolio, in turn, produces weights equal to the mode of the posterior resulting from a Multi-
variate Normal prior with covariance matrix A. Similarly, the weights of the `2-norm portfolio are analogous
to the mode of the posterior resulting from a standard Multivariate Normal prior (with covariance matrix
IN ).
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penalization.

Several other studies have contributed to the penalized portfolio optimization approach.

Carrasco and Noumon (2011) give a formal treatment of k-CV and other algorithms for

tuning the penalty parameter for various norms. Fernandes, Rocha and Souza (2012) in-

corporate information on assets’ industry and use a penalty that induces sparsity while

accounting for within-industry correlations. Fastrich, Paterlini and Winker (2015) use a

non-convex penalty in a model similar to the Weighted LASSO, which maintains sparsity

while reducing LASSO’s bias when estimating large weights.42 The authors’ approach gives

a different penalty to each weight, overweighing assets that improve portfolio performance

more than the `1 penalty does (and vice-versa for assets that weaken portfolio performance).

Finally, Yen (2015) introduces a weighted norm approach that combines the `1 and squared

`2 penalties. The author’s rationale is that the `1-norm creates sparse and stable weights,

while the `2-norm mitigates the under-diversification and extreme weights often produced

by the `1-norm.

Overall, penalized optimization methods perform very favorably compared to other meth-

ods. Across a range of datasets and performance metrics, Brodie et al. (2009) find that the

`1-penalized portfolio outperforms the NSS and 1/N portfolio. An interesting pattern they

find is that portfolio complexity (number of active weights) has a curvilinear effect on the

portfolio’s Sharpe Ratio: both too few and too many active weights reduce SR. Similarly,

DeMiguel et al. (2009) find that most norm-constrained portfolios have a higher SR than

benchmark portfolios like NSS and 1/N , have a similar SR to those of more robust methods

like covariance shrinkage, but have lower turnover than the latter. Despite the encouraging

findings of the above researchers, it is worth assessing the performance of penalized opti-

mization – and other portfolio selection methods – through a comprehensive comparison.

42Yen (2015) notes that, though they burden computation, non-convex penalties improve portfolio performance
more than convex penalties when T/N is small.
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4 Evaluating Competing Approaches

4.1 Data

To compare the performance of the approaches reviewed in Section 3, I use real data on

asset returns, instead of synthetic data. Though the latter provide more statistical power

and flexibility in evaluating competing methods’ performance, they are usually paired with

estimation criteria like (Root) Mean Squared Error. Crucially, these estimation criteria

assume that there is a ground-truth model, which is not true for asset returns (Senneret

et al., 2016, p. 6). As such, I evaluate competing methods by constructing their respective

portfolios using real data and comparing their out-of-sample (OOS) performance across a

range of financial metrics (see Section 4.3 for more).

I use a dataset employed by several other studies, the Fama and French 100 Portfolios

(FF100) (Brodie et al., 2009; Goto and Xu, 2015; Senneret et al., 2016). FF100 includes the

monthly returns of 100 portfolios formed using all equities listed on US stock exchanges.43

Note that, because I use this dataset, the portfolios I will form will be portfolios of port-

folios of stocks. That said, this comes at no cost: apart from the Multi-Index Model and

Multi-Group Model, none of the approaches reviewed in Section 3 require their inputs to be

individual stocks. I subset the last 60 years of data (2/1958–2/2018), which forces me to

drop 8 portfolios that have missing returns. Thus, my resulting dataset has a ratio T/N ≈ 8,

with T = 720 and N = 92.

43The FF100 portfolios are constructed in the following manner. At the end of every June, all US-listed stocks
are divided into two sets of deciles: one based on their market value (size) and another based on the ratio
of their book value to market value (book-to-market). Stocks’ size is determined through the closing price
of the last trading day of June, and book-to-market is determined using the book value disclosed in the
fourth-quarter earnings report of the preceding year and the market value based on the last trading day of
the preceding December. The 100 portfolios are formed through the intersection of the 10 size portfolios and
the 10 book-to-market porfolios. These portfolios are held until the next June, at which point the process
is repeated to reflect annual changes in size and book-to-market. See http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/Data_Library/det_100_port_sz.html for more details.
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4.2 Optimization & Trading Strategy

I follow the literature in adopting a rolling-window strategy to construct and evaluate com-

peting portfolios. I use training windows with a length of about 15 years (Ttrain = 184).

This gives me a T/N ratio of roughly 2 for constructing the portfolios, sufficient to train

even the more “greedy” algorithms. My test windows have a length of 6 months (Ttest = 6),

giving rise to 90 test periods. Shorter test windows result in more test periods, but amplify

within-test period noise from stock market volatility and burden computation (more test

periods require more training periods). Note that the test window’s length is the amount of

time that the investor will hold the respective portfolio before re-solving the optimization

problem using the next training window. In other words, I assume that investors rebalance

their portfolios every 6 months, which is realistic for retail investors.

To illustrate my approach in more detail, consider method k, which estimates assets’

covariance through Σ̂k and assets’ expected returns through µ̂k. First, for each training

period t = 1, . . . , 90, I estimate Σ̂k,t and µ̂k,t, and I obtain optimal relative weights wkt =

Σ̂−1
k,tµ̂k,t

1ᵀ
N Σ̂−1

k,tµ̂k,t
(I ignore excess returns over rf for simplicity). Then, for each test period and

for each evaluation metric, I use realized returns to calculate the respective portfolio’s OOS

performance. For example, for training period 1 (2/1958− 5/1973) I obtain wk1, and I use

realized moments in test period 1 (6/1973 − 11/1973), m1 and S1, to estimate k’s OOS

expected return and risk in that period, µ̂k,1 = wᵀ
k,1m1 and σ̂k,1 =

√
wᵀ
k,1S1wk,1 (and

similarly for the other performance metrics in the next section). For period 2, I shift the

training window to incorporate period 1’s test window and repeat the same process. This

process is applied to all the portfolio selection methods evaluated, with minor adjustments

made for methods that require tuning of parameters (e.g. shrinkage).

4.3 Performance Metrics

In addition to the two quantities mentioned above, expected return and risk, I use several

other financial performance metrics to compare portfolios. (All metrics reflect OOS per-
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formance, also known as ex post performance in the literature.) The third metric, Sharpe

Ratio (SR), is the ratio of expected (excess) return to risk. Recall that it was introduced in

Section 2 as the slope of the efficient frontier. The fourth metric is the Inverse Herfindahl-

Hirschman Index (HH−1), defined as the inverse of the sum of squared portfolio weight

weights: HH−1
t = (

∑N
i w

2
i,t)
−1 , t = 1, . . . , T . Since HH is a (well-known) measure of concen-

tration, IHH acts as a measure of diversification. (Note that IHHmax = N .) Moreover, higher

IHH usually leads to more stable portfolios over time, thereby limiting transaction costs (Sen-

neret et al., 2016). The fifth metric I use is Gross Exposure (GE), defined as the sum of

absolute portfolio weights: GEt =
∑N

i |wi,t|.44 Since the portfolio allocation constraint re-

quires that
∑N

i wi = 1, GE is the value of all positions in the portfolio, short and long, and

GE> 1 implies a leveraged portfolio. In other words, if the investor’s capital equals $100K

and her portfolio’s GE equals 20, it means that her exposure is $2M and her leverage is $1.9M.

Even with costless borrowing, limiting gross exposure is desirable because, all else equal, it

lowers portfolio risk (Fan, Zhang and Yu, 2012). The sixth metric is I use is the fraction

of gross exposure owed to short positions (Short), defined as: Shortt =
∑

i: wi<0 |wi,t|/GEt.

Though this is not a standard performance metric, it identifies the portfolio’s dependence on

shorting. And since shorting is not available to some institutional investors, Short reveals

the extent to which each method is open to all investors. Finally, I calculate Turnover (TO),

defined as the change in portfolio weights between holding periods: TOt =
∑N

i |wi,t−wi,t−1|.

Despite not including transaction costs in the optimization problem, lower turnover decreases

transaction costs and, all else equal, increases investor utility–especially for retail investors.

4.4 Methods & Computation

I compare the performance of 16 different methods reviewed in Section 3, in addition to the

standard MPT portfolio, the 1/N portfolio, and the market index, resulting in 19 portfolios.

Before presenting my results, I outline some implementation details. Every method other

44Note that HH−1
t is equivalent to the portfolio’s inverse squared `2-norm, while GE is equivalent to its `1-norm.
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than the standard approach and benchmarks involves replacing either the sample estimator

of Σ or the sample estimator of µ with an alternative estimator. Thus, if a particular method

involves estimating Σ with Σ̂k, then it is implied that µ is estimated by m, and the vice-

versa. In addition, aside from GLASSO, which directly estimates Σ−1, all other methods

require inverting S or Σ̂k with standard numerical to compute the optimal portfolio. For all

methods, I compute the optimal relative weights (Equation 4), which do not depend on the

target excess return constraint (2b). Relatedly, all of the performance metrics I present refer

to portfolios fully described by their relative weights and with no risk-free lending/borrowing

(i.e. tangency portfolios). To compute those portfolios, though, I must assume a risk-free

rate, so I set rf = 0.52.45 All computations were done in R, using base functions where

possible.

For the Standard MPT Portfolio (Standard), I use the sample estimators m and S. For

the market index, I use the returns on the S&P500.46 Among robust estimators of expected

returns (Section 3.1.1), I use the Trimmed Mean with k = 0.1 and the Winsorized Mean with

k = 0.2. Among robust estimators of the covariance matrix (Section 3.2.1), I use the Mini-

mum Covariance Determinant (MCD) and Minimum Volume Ellipsoid (MVE) estimators,

both implemented using the rrcov package.47 Among model-based estimators, I use the

Single-Index Model (SIM) with S&P500 as the index and the Constant Correlation Model

(CCM). I also use Vasicek-adjusted betas and Blume-adjusted betas to obtain corrected SIM

covariance matrices. Again, note that, because the assets in my data are portfolios and

not individual stocks, I cannot assign them to groups/industries and apply the Multi-Index

Model or Multi-Group Model. In terms of shrinkage estimators, I use Shrinkage to the CCM

and Shrinkage to the SIM to estimate the covariance matrix (Section 3.2.6) and Shrinkage to

45Because my data is monthly, rf = 0.52 corresponds to 6.23% non-compounded annual return (fixed income),
equal to the average yield of 10-year Treasury notes during the period studied. Data for this calculation was
downloaded from https://finance.yahoo.com/quote/%5ETNX/history.

46Data was downloaded from https://finance.yahoo.com/quote/%5EGSPC/history.
47I also experiment with the Orthogonalized Gnanadesikan-Ketterning estimator, M-estimators, S-estmators,

and other functions included in rrcov and related packages, but find that MCD and MVE consistently
outperform other robust estimators of covariance.
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the Grand Mean (m̄) to estimate expected returns (Section 3.1.2). All shrinkage models are

implemented through the tawny package, which computes the optimal shrinkage coefficient.

In terms of Sparse Graphical Models, GLASSO (Section 3.2.7) is implemented through the

huge package, which tunes the regularization parameter τ through a Rotation Information

Criterion approach (Zhao et al., 2012). Instead of selecting τ through CV or subsampling,

this approach directly estimates the optimal level of sparsity using random rotations of the

precision matrix. Random Matrix Theory (RMT) estimators are implemented using the

covmat package. The latter fits a Marchenko-Pastur density curve to the eigenvalues of the

sample correlation matrix, then replaces eigenvalues below a cutoff with the average eigen-

value above the cutoff and converts the filtered correlation matrix to a covariance matrix.48

L1- and L2-Penalized Portfolios are constructed using the cccp package, and the regular-

ization parameter τ is tuned using T -fold CV, as described in DeMiguel et al. (2009, fn.

13).49 In particular, I use a grid of 10 equally-spaced values for τ and select the value that

minimizes OOS portfolio variance across the T = 184 folds. For each value of τ , this involves

first solving Problem 6 for t = 1, . . . , T to obtain weight vectors w
[τ ]
t , then calculating OOS

portfolio returns on the withheld periods r̂t[τ ] = wᵀ
t[τ ]rt, and finally calculating OOS vari-

ance across the T folds σ̂2
[τ ] = 1

T−1

∑T
t (r̂t[τ ] − r̄[τ ])

2, where r̄[τ ] = 1
T

∑T
t rt[τ ].

50 The optimal

τ minimizes σ̂2
[τ ]. Note that a new τ has to be computed for each of the 90 rolling training

windows, and that this tuning algorithm is computationally very heavy.

4.5 Results

In Table 1 I follow the literature and report means and standard errors for all my perfor-

mance metrics. The latter are calculated across the 90 rolling test periods, each of 6-month

length. As such, the numbers I report should be interpreted substantively within the con-

text of a 6-month portfolio holding period. For example, the mean risk reported is the

48I also try deleting eigenvalues below the cutoff, and I obtain very similar portfolios.
49I also consulted some Matlab code in McKenzie (2017) and Saucedo (2014).
50Following Brodie et al. (2009), I set the target return r∗ in each training period equal to the average return

achieved by the 1/N portfolio in that period.
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standard deviation in returns investors will experience from holding the respective portfolio

in a typical period, not the standard deviation in their returns across all holding periods

(45 years).51 Note that using the latter approach does not change the relative ordering of

methods’ performance. A visual comparison of different methods’ average return and risk is

shown in Figure 4.5, where points to the north-west of a point denoting a method represent

superior methods.

Table 1 shows significant variation in the performance of the various methods. In terms or

return, the best-performers are factor models: the SIM covariance matrix with Blume- and

Vasicek-adjusted betas, as well as Shrinkage-SIM, which is a mixture between the standard

and SIM approach. Curiously, the CCM covariance matrix and its shrinkage counterpart

deliver highly negative average returns—the only methods to do so. Overall, the model-based

methods easily outperform the standard approach across all metrics.

However, when factoring-in risk, model-based methods lose their edge, and the newer

methods of RMT and penalized optimization dominate. Indeed, the L1-penalized portfolio

carries even lower risk than the equal-weighted 1/N portfolio, a particularly tough benchmark

to beat on risk (DeMiguel, Garlappi and Uppal, 2009). That said, the L1 portfolio is riskier

than simply buying and holding the S&P500 market index, a very popular approach for

retail investors. In line with previous findings, the standard portfolio is relatively risky, but,

interestingly, portfolios that use robust estimators of expected returns or covariance are even

riskier.

Combining return and risk in considering the Sharpe Ratio, we see that the newer meth-

ods (last 3 in table) dominate again. Closely following them are GLASSO and a couple of

shrinkage estimators. Moreover, all of these methods beat the standard approach and the

market in terms of SR, but only L1-penalization with SR= 0.44 beats the 1/N portfolio.

Substantively, the L1 portfolio’s SR implies that for every 10 percentage points of risk the

investor takes on, she is rewarded with 4.4 percentage points of monthly returns. Again, we

51In other words, the observations used to calculate means and standard errors are the holding periods (90),
not the months across all holding periods (540).
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see that portfolios using robust moment estimators perform poorly on SR, mostly due to

their large risk.

Moving on to the less standard performance metrics – the inverse Herfindhal index, gross

exposure, gross exposure owed to short positions, and turnover – the clear winner is the L1

portfolio. Crucially, the optimal penalty parameter selected through CV completely restricts

short-sales. By doing so, the L1 portfolio results in high diversification (IHH= 85.6 while

IHHmax = 92), no excess exposure or borrowing (GE=1), no short positions, and near-zero

turnover (TO = 0.04). As such, the L1 portfolio almost matches the ultra-diversified and

ultra-stable market and 1/N portfolios, while delivering higher risk-adjusted returns (SR).

On the contrary, mostly because they allow short-sales, other methods produce not just

significantly larger exposure, but also much less diversification and higher turnover than

the L1, 1/N, and market portfolios. Nevertheless, apart from robust estimators, almost all

methods still beat the standard approach on IHH, GE, Short, and TO.

Overall, Table 1 adds to the literature’s consensus on the standard approach’s shortcom-

ings (Michaud, 1989), the benefits of constraining short-sales (Jagannathan and Ma, 2003),

and the difficulty of beating the naive 1/N portfolio DeMiguel, Garlappi and Uppal (2009).

Moreover, the L1 portfolio’s dominance and, to a lesser extent, the respectable performance

of the L2, RMT, and GLASSO portfolios emphasize the potential of new methods for port-

folio optimization. That said, given the large standard errors for almost all point estimates –

especially for return, risk, and SR – we cannot make statistically confident statements about

the relative performance of different methods. Though the noise in estimates of portfolio

performance is largely owed to the inherent volatility of asset returns, it does prevent us

from making strictly statistical inferences about portfolio performance. In short, without

estimates of uncertainty better tailored to asset returns, we can only discriminate between

portfolios on a financial basis, not a statistical one.
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Table 1: Mean and SE of Performance Metrics

Approach Method Return Risk SR IHH GE Short Turnover
Benchmarks S&P500 0.7 3.96 0.32 NA 1 0 0

(1.74) (1.92) (0.59) (NA) (0) (0) (0)
1/N 1.23 4.63 0.42 92 1 0 0

(2.06) (2.25) (0.61) (0) (0) (0) (0)
Standard 1.17 12.86 0.29 0.08 49.03 0.48 28.28

(11.24) (18.31) (0.51) (0.05) (75.41) (0.01) (66.53)
Robust µ Trim 0.31 17.47 0.26 0.08 62.95 0.48 45.63

(20.43) (43.4) (0.48) (0.05) (150.56) (0.01) (155.19)
Winsor 1.22 14.07 0.23 0.07 50.22 0.48 34.06

(10.13) (20.91) (0.49) (0.05) (80.98) (0.01) (84.38)
Robust Σ MCD 2.79 15.01 0.2 0.05 57.37 0.49 70.29

(13.4) (18.42) (0.54) (0.03) (82.4) (0.01) (103.85)
MVE 1.81 14.92 0.19 0.04 55.89 0.49 66.48

(6.19) (14.63) (0.48) (0.03) (48.66) (0.01) (56.59)
Model-Based SIM 2.71 10.83 0.32 0.55 11.63 0.45 1.98

(6.36) (7.26) (0.66) (0.31) (3.85) (0.01) (0.72)
Vasicek 2.84 11.73 0.3 0.46 12.69 0.46 2.2

(6.92) (7.89) (0.65) (0.27) (4.3) (0.01) (0.81)
Blume 2.92 11.3 0.32 0.48 12.25 0.46 2.09

(6.56) (7.73) (0.63) (0.27) (4.03) (0.01) (0.65)
CCM -3.75 27.07 0.34 0.95 29.16 0.44 24.54

(82.24) (94.01) (0.69) (0.78) (88.02) (0.03) (95.64)
Shrinkage Shrink-CCM -3.78 26.34 0.36 0.56 30.77 0.46 25.29

(82.23) (94.14) (0.65) (0.41) (87.67) (0.02) (95.48)
Shrink-m̄ 1.11 11.32 0.32 0.09 42.24 0.48 20.82

(10.16) (13.53) (0.55) (0.06) (50.01) (0.01) (37.71)
Shrink-SIM 2.91 13.49 0.18 0.05 51.25 0.49 48.78

(16.06) (16.78) (0.53) (0.04) (57.36) (0.01) (84.15)
Graphical GLASSO 2.63 9.6 0.36 0.16 20.66 0.47 5.25

(5.57) (5.39) (0.71) (0.09) (6.79) (0.01) (2.16)
Spectral RMT 1.41 5.51 0.38 0.47 14.41 0.46 3.7

(2.99) (3.5) (0.6) (0.33) (7.36) (0.02) (2.93)
Penalized L1 1.26 4.61 0.44 85.59 1 0 0.04

(2.07) (2.28) (0.62) (3.44) (0) (0) (0.02)
L2 1.55 5.23 0.38 0.44 14.03 0.46 3.48

(2.95) (3.09) (0.69) (0.31) (6.5) (0.02) (2.51)

NOTES: Means and standard errors of monthly OOS performance metrics across 90 rolling test periods, each
with length 6 months. Bold numbers identify the three best-performing portfolios in each metric—excluding
benchmark portfolios. Underlying portfolios constructed using monthly returns data for the period 2/1958−
2/2018 on N = 92 portfolios from FF100, with rolling training periods of length T = 184. See Section 4.2 for
details on portfolio optimization/trading strategy and Section 3 for a review of methods/portfolios. Mean
SR is calculated across test periods, not by dividing mean return by mean risk. See Section 4.3 for more
details on metrics.
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Figure 1: Mean OOS Risk & Return

NOTES: Mean out-of-sample excess monthly return and risk over risk-free rate from following respective
portfolio selection method. Averaged across 89 6-month holding periods (6/1973− 11/2017).

5 Conclusion

This study reviewed the canonical model of optimal financial portfolio selection, the Markowitz

model, exposed its limitations, introduced several competing approaches for addressing those

limitations, and compared these approaches’ performance using a comprehensive empirical

exercise. Throughout, I gave more attention to newer approaches, while attempting to bridge

the gap between the diverse methodological backgrounds of the researchers and practition-

ers studying optimal portfolio selection. Overall, I find some promise in the performance

of newer techniques, like penalizing weights’ norm, filtering the covariance matrix through

random matrix theory, and estimating the precision matrix through sparse graphical models.

These methods outperform the standard Markowitz model and market index across a range

of metrics, while the best-performer, the L1-penalized portfolio, also beats the demanding

42



R
et

ur
n 

(x
−

fo
ld

 in
cr

ea
se

)

0
40

0
80

0
12

00

1973 1978 1983 1988 1993 1998 2003 2008 2013

1/N RMT L1 L2 S&P500

Figure 2: Realized Cumulative Returns

NOTES: Cumulative excess returns over risk-free rate from following respective portfolio selection method.
Plotted for 89 6-month holding periods (6/1973− 11/2017).

benchmark set by the equally weighted portfolio.

There at two natural extensions of this study. First, as noted in the previous section,

the estimation of uncertainty in portfolio performance, which would facilitate statistical

inference in comparing approaches. Literature on this topic is relatively nascent, thus I leave

this advance to future work (Ledoit and Wolf, 2008; DeMiguel et al., 2009). The second

obvious way to supplenent my comparison of different methods is to use additional data

sources. Potential parameters of the data one could vary are the market assets are traded

on (eg US- vs Japan-listed stocks), the number of assets considered (N), the length of the

rolling training windows (T ) and, by extension, the ratio of the previous two parameters

(T/N), and the length of the rolling test/holding periods and, by extension, the number of

rolling training and test periods.
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